Band Structures of Periodic Porphyrin Nanostructures
نویسندگان
چکیده
منابع مشابه
Complete band gaps in one-dimensional left-handed periodic structures.
Artificially fabricated structures with periodically modulated parameters such as photonic crystals offer novel ways of controlling the flow of light due to the existence of a range of forbidden frequencies associated with a photonic band gap. It is believed that modulation of the refractive index in all three spatial dimensions is required to open a complete band gap and prevent the propagatio...
متن کاملPorphyrin-Based Nanostructures for Photocatalytic Applications
Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the des...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملComplementary Periodic Structures for Miniaturization of Planar Antennas
In this paper various layered planar periodic structures which provide miniaturization of planar antennas are proposed and discussed. The proposed designs are based on two concepts, reactive impedance surfaces and complementary periodic structures. In the proposed structures, complementary periodic rings and slots are patterned on the intermediate boundaries of the dielectric layers. A patch an...
متن کاملConfined diffusion in periodic porous nanostructures.
We performed fluorescence correlation spectroscopy measurements to assess the long-time self-diffusion of a variety of spherical tracer particles in periodic porous nanostructures. Inverse opal structures with variable cavity sizes and openings in the nanometer domain were employed as the model system. We obtained both the exponent of the scaling relation between mean-square displacement and ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2018
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.8b08131